Lesson 6: Mathematical Models of Fluid Flow Components

Learning Objectives

After this presentation you will be able to:
>Define the characteristics of a fluid flow system
$>$ Identify if a fluid flow is Laminar or Turbulent based on fluid and system parameters.
> Write mathematical models for fluid characteristics.
> Develop an analogy between electrical characteristic and fluid system characteristics.
> Solve for steady-state fluid flow using given mathematical modeling equations.

Liquid Flow Characteristics

Note: Flow resistance is either linear or non-linear. It depends on type of fluid flow, which is based on the fluid and piping parameters.

Fluid Flow Classifications

Types of liquid flow
Laminar Flow - low velocity flows. Stream lines are parallel. Liquid flows in layers. Linear flow resistance.

Fluid Flow Classifications

Types of liquid flow
Turbulent - relatively high velocity flow. Liquid swirls and spins as it flows. Non-linear flow resistance.

Flow type determined by the Reynold's Number

Determining Flow Types

Reynold's Number

$$
\mathrm{R}=\frac{\rho \cdot \mathrm{v} \cdot \mathrm{~d}}{\mu}
$$

Where $\rho=$ density of the fluid $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
$\mathrm{v}=$ average velocity of the fluid (m / s)
$\mathrm{d}=$ diameter of pipe (m)
$\mu=$ absolute viscosity of fluid (Pa-s)
Note: Reynold's number is dimensionless
Laminar flow : R<2000
Turbulent flow: $\mathrm{R}>4000$
Transition flow: $2000<R<4000$

Determining Flow Types

Computing average velocity

Laminar Flow

Velocity profile changes across the cross section of pipes and ducts

$$
\mathrm{v}=\frac{\mathrm{Q}}{\mathrm{~A}}
$$

Since pipe diameter is usually given

$$
\mathrm{v}=\frac{4 \cdot \mathrm{Q}}{\pi \cdot \mathrm{~d}^{2}}
$$

Where: $\quad A=$ area of pipe $\left(m^{2}\right)$
$\mathrm{Q}=$ flow ($\mathrm{m}^{3} / \mathrm{s}$)
$\mathrm{d}=$ pipe diameter (m)

Laminar Flow Equations

Laminar Flow Equations for Round Pipes

$$
\begin{aligned}
& \mathrm{P}=\mathrm{R}_{\mathrm{L}} \cdot \mathrm{Q} \\
& \mathrm{R}_{\mathrm{L}}=\frac{128 \cdot \mu \cdot \mathrm{~Pa})}{\pi \cdot \mathrm{d}^{4}}
\end{aligned}
$$

Where: $\mathrm{p}=$ pressure drop (Pascals)
$R_{L}=$ laminar flow resistance
$\mathrm{Q}=$ flow ($\mathrm{m}^{3} / \mathrm{s}$)
$\mathrm{I}=$ length of pipe (m)
$\mathrm{m}=$ absolute viscosity (Pa-s)
$\mathrm{d}=$ pipe diameter (m)

Turbulent Flow Equations

Turbulent Flow Equations for Round Pipes

$$
\begin{aligned}
& P=K_{t} \cdot Q^{2} \\
& K_{t}=\frac{8 \cdot \rho \cdot f \cdot 1}{\pi^{2} \cdot d^{5}} \\
& R_{t}=2 \cdot K_{t} \cdot Q
\end{aligned}
$$

Where: $\mathrm{f}=$ friction factor (see table 3.3 p .8 I text)
$\mathrm{I}=$ length (m)
$\mathrm{d}=$ pipe diameter (m)
$\rho=$ density of liquid ($\mathrm{kg} / \mathrm{m}^{3}$)
$\mathrm{R}_{\mathrm{t}}=$ turbulent flow resistance ($\mathrm{Pa}-\mathrm{s} / \mathrm{m}^{3}$)
$\mathrm{p}=$ pressure (Pa)
$\mathrm{Q}=$ flow ($\mathrm{m}^{3 / \mathrm{s}}$)

Laminar Flow Example

Example 6-1: Oil at a temperature of 15 C flows in a horizontal, 1 cm diameter tube with a flow rate of $9.42 \mathrm{~L} / \mathrm{min}$. Tube length is 10 m . Find: Reynold's number, flow resistance, pressure drop in tube.

Convert all units into SI units

All conversion factors are in the textbook appendix

$$
d=1 \mathrm{~cm}=0.01 \mathrm{~m}
$$

$$
Q=9.42 \mathrm{~L} / \mathrm{min}\left(1.6667 \times 10^{-5} \mathrm{~m}^{3} / \mathrm{s} / \mathrm{L} / \mathrm{min}\right)
$$

$$
Q=1.57 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s}
$$

$\begin{aligned} & \text { Average } \\ & \text { velocity }\end{aligned} \quad V=\frac{4 Q}{\pi d^{2}}=\frac{4\left(1.57 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s}\right)}{\pi(0.01 \mathrm{~m})^{2}}=2.0 \mathrm{~m} / \mathrm{s}$
From AppendixA in textbook $\rho=880 \mathrm{~kg} / \mathrm{m}^{3} \mu=0.160$ Pa-s
Compute
Reynold's number
R<2000 so flow in Laminar. Linear relationship between flow and pressure drop.

Laminar Flow Solution (2)

Compute Laminar flow resistance

$$
\begin{aligned}
& R_{L}=\frac{128 \mu 1}{\pi d^{4}} \\
& R_{L}=\frac{128(0.120 \mathrm{~Pa}-5)(10 \mathrm{~m})}{\pi(0.01)^{4}} \\
& R_{L}=6.519 \times 10^{9} \mathrm{~Pa}-\mathrm{s} / \mathrm{m}^{3}
\end{aligned}
$$

Compute pressure drop

$$
\begin{aligned}
& P=R_{L} Q \\
& P=\left(6.519 \times 10^{9} \mathrm{~Pa}-5 / \mathrm{m}^{3}\right)\left(1.57 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s}\right) \\
& P=1.0285 \times 10^{6} P_{a}
\end{aligned}
$$

Convert to psi

$$
p=\left(1.0285 \times 10^{6} \mathrm{~Pa}\right)\left(1.45 \times 10^{-4} \mathrm{PsI} / \mathrm{Pa}\right)=148.4 \mathrm{psi}
$$

Turbulent Flow Example

Example 6-2: Water at I5 C flows through a commercial steel pipe with a diameter of 0.4 inch with a flow rate of $6 \mathrm{gal} / \mathrm{min}$. The line is 50 ft long. Find: Reynold's number, flow resistance, pressure drop in pipe.

From AppendixA Density $\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$ Viscosity $\mu=0.00 \mathrm{I}$ Pa-s
Convert all English units to SI units

$$
\begin{aligned}
& d=(0.4 \mathrm{in})(0.0254 \mathrm{~m} / \mathrm{in})=0.01016 \mathrm{~m} \\
& Q=(6 \mathrm{gal} / \mathrm{min})\left(6.3088 \times 10^{-5} \mathrm{~m}^{3} / \mathrm{s} / \mathrm{gpm}\right)=3.7853 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s} \\
& l=(50 \mathrm{ft})(0.3048 \mathrm{~m} / \mathrm{ft})=15.24 \mathrm{~m}
\end{aligned}
$$

Find the average velocity

$$
v=\frac{4 Q}{\pi d^{2}}=\frac{4\left(3.7853 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s}\right)}{\pi(0.0106 \mathrm{~m})^{2}} \quad V=4.669 \mathrm{~m} / \mathrm{s}
$$

Turbulent Flow Solution (2)

Compute the Reynold's number

$$
\begin{aligned}
& R=\frac{\rho . V d}{\mu}=\frac{\left(1000 \mathrm{~K}_{\xi}\left(\mathrm{m}^{3}\right)(4.669 \mathrm{~m} / \mathrm{s})(0.0106 \mathrm{~m})\right.}{0.001 \mathrm{Pa-5}} \\
& R=47,440 \quad R>4000
\end{aligned}
$$

$R>2000$ so the flow is turbulent. Use the turbulent equations.
Turbulent equations require friction factors from Table 3-3 on page 81 of textbook.
$P=K_{t} Q^{2}$
Find f values from Table 3-3. Get values that bracket the Computed value.
$R_{t}=2 k_{t} Q$
$k_{t}=\frac{8 \rho f L}{\pi^{2} d^{5}}$
For commercial steel pipe: diameter $1-2 \mathrm{~cm}$
R between $R_{a}>10,000$
$R_{b}<100,000$
f between $\quad f_{a}=0.035$
$\mathrm{f}_{\mathrm{b}}=0.028$

Turbulent Flow Solution (3)

Friction factor, f, must be between f_{a} and f_{b}

$$
\begin{aligned}
& f=0.035+(0.028-0.035)\left[\frac{47,440-10,000}{100,000-10,000}\right] \\
& f=0.035+-0.022\left(\frac{3.744}{9}\right) \\
& f=0.03209
\end{aligned}
$$

Now find K.

$$
\begin{aligned}
& K_{t}=\frac{8 \rho f L}{\pi^{2} d^{5}}=\frac{8\left(1000 K_{g} / \mathrm{m}^{3}\right)(0.03209)(15.24 \mathrm{~m})}{\pi^{2}(0.01016 \mathrm{~m})^{5}} \\
& K_{t}=3.6614 \times 10^{12} \rho_{u^{-5} / \mathrm{m}^{3}}
\end{aligned}
$$

Find R_{t}

Turbulent Flow Solution (4)

Convert R_{t} to English units

$$
R_{t}=\left(2.7719 \times 10^{9} \mathrm{~Pa} 5 / \mathrm{m}^{3}\right)\left(9.148 \times 10^{-9}\right)=25.357 \mathrm{ps} / \mathrm{gpm}
$$

Appendix
Compute pressure drop

$$
\begin{aligned}
& P=K_{t} Q^{2} \\
& P=\left(3.6614 \times 10^{12} P_{a}-\mathrm{s} / \mathrm{m}^{6}\right)\left(3.7953 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s}\right)^{2} \\
& P=5.246 \times 10^{5} \mathrm{~Pa}
\end{aligned}
$$

Convert P to English units

$$
\begin{aligned}
& P=\left(5.246 \times 10^{5} \mathrm{~Pa}\right)\left(1.45 \times 10^{-7} \mathrm{P5} / \mathrm{Pa}\right) \\
& P=76.02 \mathrm{PS} 1
\end{aligned}
$$

Liquid Flow Capacitance

Liquid Flow Capacitance - increase in volume of liquid required to produce unit increase in pressure

$$
\mathrm{C}_{\mathrm{L}}=\frac{\Delta \mathrm{V}}{\Delta \mathrm{P}}
$$

Where: $C_{L}=$ capacitance ($\mathrm{m}^{3} / \mathrm{Pa}$)
$\Delta V=$ volume change (m^{3})
$\Delta \mathrm{p}=$ pressure change (Pa)
Derive relationship for C_{L}.

Pressure relationship $\quad \Delta \mathrm{P}=\rho \cdot \mathrm{g} \cdot \Delta \mathrm{H}$
Where: $\rho=$ density of fluid
$\mathrm{g}=$ acceleration due to gravity
$\mathrm{H}=$ height of liquid in tank

Liquid Flow Capacitance Derivation

Find liquid flow capacitance in terms of tank parameters.

$$
\begin{aligned}
& \Delta \mathrm{P}=\rho \cdot \mathrm{g} \cdot \Delta \mathrm{H} \\
& \Delta \mathrm{H}=\frac{\Delta \mathrm{V}}{\mathrm{~A}} \\
& \Delta \mathrm{P}=\rho \cdot \mathrm{g} \cdot\left(\frac{\Delta \mathrm{~V}}{\mathrm{~A}}\right) \\
& \mathrm{C}_{\mathrm{L}}=\frac{\Delta \mathrm{V}}{\Delta \mathrm{P}}=\frac{\Delta \mathrm{V}}{\rho \cdot \mathrm{~g} \cdot\left(\frac{\Delta \mathrm{~V}}{\mathrm{~A}}\right)}=\frac{\mathrm{A}}{\rho \cdot \mathrm{~g}}\left(\mathrm{~m}^{3} / \mathrm{Pa}\right) \\
& \mathrm{C}_{\mathrm{L}}=\frac{\mathrm{A}}{\rho \cdot \mathrm{~g}}\left(\mathrm{~m}^{3} / \mathrm{Pa}\right) \quad \text { Final Equation }
\end{aligned}
$$

Fluid Capacitance Examples

Example 6-3: A tank has a diameter of 1.83 meters and a height of 10 ft . Determine the capacitance of the tank when it holds: a.) water b.) oil c.) kerosene d.) gasoline

$$
\begin{aligned}
& \text { a.) } \quad C_{L}=\frac{A}{\rho g} \quad A=\frac{\pi d^{2}}{4}=\frac{\pi(1.83 \mathrm{~m})^{2}}{4} \\
& A=2.63 \mathrm{~m}^{2} \\
& \rho=1000 \mathrm{Kg} / \mathrm{m}^{3} \\
& C_{L}=\frac{2.63 \mathrm{~m}^{2}}{1000 \mathrm{~kg} / \mathrm{m}^{3} 9.81 \mathrm{~m} / \mathrm{s}^{2}} \\
& C_{L}=2.68 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{Pu} \\
& \text { b.) } \rho=880 \mathrm{~K}_{\mathrm{g}} / \mathrm{m}^{3} \\
& C_{L}=\frac{2.63 \mathrm{~m}^{2}}{\left(880 \mathrm{~K}_{9} / \mathrm{m}^{3}\right)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)} \\
& C_{L}=3.05 \times 10^{-3} \mathrm{~m}^{3} / \mathrm{Pa}
\end{aligned}
$$

Fluid Capacitance Examples

Parts c. and d.

$$
\begin{array}{r}
\text { c.) } \rho=800 \mathrm{~kg} / \mathrm{m}^{3} \quad C_{L}=\frac{2.63 \mathrm{~m}^{2}}{\left(800 \mathrm{~kg}_{\mathrm{g}} \mathrm{~m}^{3}\right)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)} \\
C_{L_{L}=3.35 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{P}_{\mathrm{a}}}^{\left(740 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.801 \mathrm{~m} / \mathrm{s}^{2}\right)}=C_{L} \\
\text { d. } \rho=740 \mathrm{~kg} / \mathrm{m}^{3} \quad \\
3.62 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{P}_{\mathrm{G}}=C_{L}
\end{array}
$$

Note: As density of fluid decreases, the volume of liquid required to produce a unit increase in pressure increases.

Fluid Inertance

Amount of pressure drop required to increase flow rate by one unit/second. Analogy-electrical inductance.

$$
\mathrm{I}_{\mathrm{L}}=\frac{\mathrm{p}}{\frac{\Delta \mathrm{Q}}{\Delta \mathrm{t}}}
$$

Where $I_{L}=$ inertance $\left(\mathrm{Pa} /\left(\mathrm{m}^{3} / \mathrm{s}^{2}\right)\right.$
$\mathrm{p}=$ pressure $\operatorname{drop}(\mathrm{Pa})$
$\Delta \mathrm{Q} / \Delta \mathrm{t}=$ change in flow
Inertance defined using physical parameters of pipe.

$$
\mathrm{I}_{\mathrm{L}}=\frac{\rho \cdot 1}{\mathrm{~A}}
$$

Where: $\quad A=$ area of pipe $\left(m^{2}\right)$
$\rho=$ density of liquid $\left(\mathrm{Kg} / \mathrm{m}^{3}\right)$
$\mathrm{I}=$ length of pipe (m)

Dead-Time Delay

Dead-time Delay of Liquid - time required to transport liquid from one point to another in piping system or ducts.

$$
\begin{aligned}
& \qquad t_{d}=\frac{D}{v} \\
& v=\text { average velocity of fluid }(\mathrm{m} / \mathrm{s}) \\
& \mathrm{D}=\text { distance traveled }(\mathrm{m})
\end{aligned}
$$

Example 6-4: Determine the inertance of water in a pipe with a diameter of 2.1 cm and a length of 65 meters.

$$
\begin{array}{lll}
d=2.1 \mathrm{~cm}=0.021 \mathrm{~m} & I_{L}=\frac{\rho 1}{A} & A=\frac{\pi(0.021)^{2}}{4}=3.46 \times 10^{-4} \mathrm{~m}^{2} \\
\rho=1000 \mathrm{~kg} / \mathrm{m}^{3} & A=\frac{\pi d^{2}}{4} & I_{L}=\frac{\left(1000 \mathrm{~kg} / \mathrm{m}^{3}\right)(65 \mathrm{~m})}{3.46 \times 10^{-4} \mathrm{~m}^{2}} \\
L=65 \mathrm{~m} & & I_{L}=1.88 \times 10^{8} P_{G} / \mathrm{m}^{3} / \mathrm{s}^{2}
\end{array}
$$

END LESSON 6: MATHEMATICAL MODELS OF FLUID FLOW COMPONENTS

